
International Journal o f  Theoretical Physics, Vol. 10, No. 3 (1974), pp. 165-173 

Preferred Frames and Oscillating Universes 

L KATZ 

The Racah Institute of  Physics, The Hebrew University o f  Jerusalem, Israel 

Received." 12 August 1973 

Abstract 

A metric theory of gravitation is presented. It is based on the existence of a preferred 
'cosmic' time. It agrees with all present experimental facts regarding gravitation and leads 
to singularity-free oscillating universes. 

1. Introduction 

Besides Einstein's theory of  gravitation, a number of  other metric theories 
of  gravity have also been constructed for many different reasons [see Wei-Tou- 
Ni (1972) for a compendium of  metric theories]. It appears, however, after a 
careful analysis by Nordtvedt & Will (1972), that theories so far built up, in 
which the principle of  covariance has been dropped in favor of  the existence 
of a preferred frame, are simply non-viable, they disagree 'violently' with 
observable facts. 

To construct a viable non-covariant theory thus appears as a challenge.t 
There exists, however, a deeper reason for such an attempt: the avoidance of  
singularities in cosmological models. Singularities in general relativistic cos- 
motogies, as well as in similar theories like that of  Brans & Dicke (1961) in 
which gravitation is always attractive, seem to be inescapable; this follows from 
general theorems due to Penrose (1965), Geroch (1966) and Hawking (1966). 
In particular there seems to be no way of  obtaining a real 'bounce'  in an 
oscillating universe with a reasonable energy tensor except by abandoning 
general relativity and similar theories, or, perhaps [Ellis (1971)], by introducing 
a large repulsive (A > 0) cosmological term. 

Various examples have been given of  covariant theories with modified 
Einstein equations that lead to singularity-free cosmologies: the C-field theory 
of  Hoyle & Nartikar (1964) with [SIC = O, also Rosen's theory (Rosen 1969) 
with a cosmological field, and, Iately, Trautman's version of  the Einstein- 

t See in this respect Wei-Tou-Ni (1973) and further remarks below. 
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Cartan theory with non-zero torsion related to the intrinsic spin of  the universe 
(Trautman, 1973). 

In what follows we shall briefly describe a non-covariant preferred frame 
theory of  gravitation whose 'extended Parametrized Post-Newtonian' approxi- 
mation (Will & Nordtvedt, 1972), or so-called PPN formalism, is the same as 
that o f  general relativity-irrespective of  the value of  a new coupling parametert 
a appearing in the theory. That is, the theory agrees well with all present 
observational evidence. The theory also admits homogeneous and isotropic 
metrics that do not  go through a singularity, that is, contracting and dflatating 
worlds, once or an infinite number of  times, with read bounces. 

From an esthetic point of  view, abandoning the principle of  covariance 
appears as a great loss. It may, however, be the price to pay if one is not ready 
to accept the idea of  a closed universe reduced to one singular point with 
infinite density o f  matter. I f  one believes that some mechanism exists that can 
prevent singularities in cosmological models,:: then 'cosmic'  time should keep 
running. Reciprocally, by imposing the cosmic time ' to go on' we shall imply, 
in a self-consistent way, the existence o f  regular solutions. In this respect our 
preferred flame theory can be considered as a covariant theory with a sym- 
metry breaking§ rather than a really non-covariant one. We shall see a new 
coupling constant appearing in the formalism whose non-zero value will insure 
a singularity-free world, but  when taken infinitesimally small will lead to cos- 
mological models as close as one wishes to those given by Einstein's equations. 

2. Lagrangian and Equations o f  Field with no Constraints 

Let us now proceed with formal developments. The theory is a metric one 
with a preferred time coordinate t, orthogonal to the three-space: The principle 
of  covariance is thus not  supposed to hold and there exists instead a preferred 
'cosmic'  time _oo < t < +o% as in Rosen's non-covariant theory o f  gravitation 
(Rosen, 1971a, b). The gravitational field has seven components: [[ 

ds2 = guy dxu dxv - cb2 dt2 + gkt dxk dxt (2.1) 

in which (b and gxl are functions of  t, x k. For other fields and for matter, 
there exist a conserved energy tensor T~, 

DvT~, = 0 (2.2) 

and their equations, in the limit of  weak gravitation (fiat space) reduce to the 
form they have in special relativity. 

Second-order differential equations of  ~ and gkl are derived from a 

~- Provided of course that the new coupling constant is not as great as to make the 
PPN development altogether meaningless. 

$ And there are some examples of plausible mechanisms where this happens, see for 
instance Parker & Fulling (197 3) where other examples are cited. 

§ We are indebted to G. Horwitz for having drawn our attention to this interpretation. 
II Notations: indices h, t*, v = 0, 1, 2, 3; indices k, I = 1, 2, 3; a covariant derivative 

relative to x h is noted D~,, an ordinary one ~?v Units: c = 87rk = t. 



PREFERRED FRAMES AND OSCILLATING UNIVERSES 167 

Langrangian density. In accordance with our preferred frame condition we 
shall demand that this density L admits the following pseudo-group of  
coordinate transformations: 

t '  = a t  + t3 (~, 13 real numbers) (2.3) 

X lk = f k ( x 1 )  (2.4) 

One can then show without difficulty that the most general polynomial homo- 
geneous quadratic expression in time derivatives (0 o or a dot over a symbol) 
and space derivative (3k) of q5 and gm is, up to a divergence term, the follow- 
ing expression: 

L = - [ ( - g ) l / 2 R  + 2aft 2] + L M  (2.5) 

in which g = detguv , R is the scalar curvature, R =-gUVRuv, L m is the matter 
and other field Lagrangian density and a is an arbitrary new coupling constant 
while u stands for 

or with a new quantity 

u may be written 

U =- [(__g)I /2gO0] 1/2 (2.6) 

Q - ( - d e t  gkl) 1/2 (2.7) 

u = (Q/d~)l/2 (2,8) 

The variational derivatives of L relative to ~ and gkt gives us dynamical 
equations. They may be written as follows: 

Got  =- R o t  - ½gooR - Too = gooaii/ueb 2 (2.9) 

Gkl ~ R k l  -- ½gklR - Tkl = --gklaii/udp2 (2.10) 

They look like modified Einstein equations except that the usual 'constraint' 
equationt Gok = 0 is here not an equation. In addition the correction terms 
are covariant for (2.3) and (2.4) and not for arbitrary coordinate transform- 
ations. 

Another useful form of (2.9) and (2.10) is as follows: 

Wkl =-- Gkt - ½gklG = 0 (2.11) 

Got = aii/u (2. t 2) 

in which G =- gUVGuv. Equations (2.11) form the usual 'dynamical' subset of 
the equations of general relativity (those containing second-order time deriva- 
tives in glcl). The modification introduced by our preferred frame conditions 
thus replaces the constraint Got = 0 by a dynamical equation (2.12)(and 
suppresses the other constraint). We have here a dynamical set for q5 and gkt 
without constraints. 

That does not contain second-order time derivatives. 
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A Hamfltonian formalism may be built up in terms o f u  and gkl and their 
conjugate variables, say, w and pki. In principle, any reasonable set of  Cauchy 
conditions on a hypersurface t = 0 is acceptable, since there are no constraints. 

From (2.2), and because of  the contracted Bianchi identities, we have, as in 
general relativity, 

D v G ~ = O  (2.13) 

and if we take account of  (2.11) we may reduce (2.13) to the following set of  
equations f o r f  k =-- g k l g f  t -- ( - g ) I / 2 G ° :  

(u4Goo)" + u 2 ~/c((I )2~/¢)  = 0 (2.14) 

ffgtc - u 2 3kGoo = 0 (2.15) 

We shall use these equations below. 

3. Cosmological Models  

For certain homogeneous universes like Bianchi type IX, for isotropic and 
homogeneous worlds, as well as in other cases of  interest, 2/gtc = 0 identically 
for symmetry reasons. When this is the case, we see from (2.14) and (2.15) 
that  Goo depends on t only and that 

Goo(t)  = F ( x k ) u  -4 (3.1) 

in which F is an arbitrary function o f x  k. We shall obtain the same result if  we 
note that our equations (2.9) and (2.10) may now be written as follows: 

= ( 3 . 2 )  

in which 

®~ = diag(v, - v ,  - v ,  - v )  (3.3) 

with 

v - afi/u,  2 (3 .4)  

Then, because of (2.13), (3.2) gives 

= 0 (3 .5)  

and this leads us to the same result (3.1) provided we take account of  (2.12). 
It turns Out that (2.12) and (3.1) are integrable and the solution may be 
written as follows: 

G ° = F / Q  2 (3.6) 

o9 = Q/ ( t  2 + 1 / ea ) ( eF)  a/2 e -= sign F (3.7) 

q~ is a regular function for any value of  t if  ea > 0. In writing (3.7) we made 
use of  the freedom of  choosing t as defined in (2.3); t is now fixed up to its 
sign. 
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Let us consider in particular a Robertson-Walker metric which in co-moving 
coordinates may be written as: 

ds 2 = cb2(t) d t  2 - ~ 2 ( d x 2  + dy 2 + dz 2) (3.8) 

with 

~ = S ( t ) / ( l + ¼ k r 2 ) ;  k = 0 ,  +1; r 2 = - x 2 + y Z + z 2  (3.9) 

Equations (2.11) and (2.12) now take the following form: (2.11) reduces to 
one non-trivial equation for the one significant function S whose integral is 
just (3.6), and the solution of (2.12) is (3.7). However since ~ depends only 
on t it follows that F is now defined up to a constant of  integration A > 0 and 

F = cA2~(1 + ¼kr2) 6 (3.10) 

With (3.10), (3.6) and (3.7) we now have the following structure: 

G ° = eA 2/$6 (3.11) 

¢, = S3 /A( t :  + 1~ca) (3.12) 

Equation (3.11) is a modified Friedman equation that  may be written in a more 
familiar form by introducing a new variable 

t 

(3.13) 
0 

With a prime indicating a derivative relative to v, (3.1 t)  now appears as 
foUows: 

3(S '2 + k ) S  -2 - T ° = eA2S  -6 (3. t4)  

An S -6 modification appears in a variety of  modified Friedman equations, 
for instance in Hoyle & Narlikar (1964), in Rosen (1969) and in Trautman 
(1973). In all these cases as well as in (3.14) the origin of  the S -6 term is the 
same: any modification like O~z, of  the energy tensor T~, has necessarily the 
same form as T~ itself, in the special universe (3.8), namely 

T~ - diag(cr, - p ,  - p ,  - p )  (3.15) 

with at most  two significant different functions; if these two functions are 
equal, and if (3.5) is satisfied, then O °, like in the second member  of  (3.11), is 
an S -6 term. 

Equation (3.14) is thus well known. For k = 0 it gives a contracting- 
dilatating world with one real bounce and, when k = +1, the solution is a 
perpetually oscillating closed universe that does not go through a singular 
state, provided in both cases that e = - 1 .  In view of  (3.12), one obtains a 
regular metric for any value of  t if  the coupling constant a is negative: a < 0. 

Before trying to find some way of  evaluating a, or at least put  an upper 
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bound on it, it may be of  interest to note that (2 .12)may also be written in 
the following form: 

--(~/q53) + 3(~2/2~2 ~ 2) + 3 (+2/2t) 4 ) 

+ Y [ ( ~  ~ k k ~  + G ~ k 6 ) / ~  31 ~ o -- ~ ( T ~  - T~)  = 2(1 + 1/a)G°o 
/¢ 

(3.16) 
For a = - 1 ,  this equation is the same as the one for q~ used by Goldman & 
Rosen (1972) and is one o f  the equations o f  Rosen's preferred frame theory o f  
gravitation (Rosen, 197 l a, b). 

4. Post-Newtonian Approximation and the N e w  Coupling Constant 

Consider now the case o f  a perfect fluid with an energy tensor of  the form 
of (3.15). In non-comoving coordinates, 

T ~" = (a +p)ugu v - g~Vp (4.1) 

u x is the velocity field of  matter. Consider the so-called Post Newtonian (PN) 
approximation (Chandrasekar, 1965). We sha11 see below that our equations 
(2.1 I)  and (2.12) lead to the same approximate PN metric as general relativity. 
This wilt imply at least two things: 

(i) Experimental accuracy does not go beyond the PN approximation at 
present. Since the PN approximation of  general relativity agrees with 
all present experimental evidence concerning gravitation (Nordtvedt & 
Will, 1972) it follows that our preferred frame theory also agrees with 
all present observations. This rather unusual property of  a preferred 
frame theory is worth noting. 

(ii) In addition, it implies that no fine upper-bound can be put for the 
moment on the coupling constant a on the basis of  solar system 
experiments. What is needed is a measurement whose sensitivity is o f  
the order of  a post-PN term. Such a measurement may be achieved in 
another decade or so from now if progress in experimental techniques 
continues at the present rate. 

Let us now very briefly show that the PN-approximate solution of  (2.2), 
(2.11) and (2.12) is the same as that o f  general relativity. The object o f  a PN 
formalism is to calculate the dynamical equations (2.2) up to terms of  order 
c -6 or briefly up to'~ 0(6). To do this we need to obtain g00 up to 0(6), gok 
up to 0(5) and gkl up to 0(4). Regarding TUU, it is useful to note the order in 
c -1 o f  some of  its terms since in our units this is not  apparent at first sight. As 
usual a may be split into O + e, where p is the rest mass energy density and e 
the proper internal energy density. So p is 0(2), e and p are 0(4) and u e = 
v k + 0(2), v k being 0(1). 

t Up to 0(6) means  inc lud ing  terms of order 0(4) but neglecting terms of order 
o (/> 6). 
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We shall use the PPN formalism of Will & Nordtvedt (1972) (to whom we 
shall refer for details). We shall however transform the PPN metric to coordi- 
nates in which gok = 0. This will considerably simplify the calculations with 
(2.1 I)  and (2,12). It may be shown after a little computation that in coordi- 
nates in which gok = 0, the PPN form ofgoo and gkl are as follows for any 
metric theory: 

goo = 1 + 2U +goo(4 )+  0(6) (4.2) 
t 

gkl=--51¢t + 27U61cl--(7A1 + A2) f ~(kVl) dt' +O(4) (4.3) 

here, 7, A1, A2 are parameters, goo(4) is some elaborate expression of  order 
0(4) whose explicit structure we shall not need, while 

1 f p ( x ' X , t )  3 , x x U(x k, t) =- - ~ R'  d x ,  R'k _ - x'k (4.4) 

and 
1 ~ p(x q, t)vk(x 'm, t) 

V~:(x k, t) =- + ~ J R'  d3x' (4.5) 

or, equivalently, 

~kkU----~U=½P, ~V~ =-½pv k (4.6) 
k 

One has to find 7, X =- 7A 1 + A 2 and goo(4); for this we shall insert guy as 
given by (4.2) and (4.3) into equations (2.11) and (2.12), which we shall 
decompose according to their order in c-Z; symbolically we shall write ~(2.11) 
and (2.12) as follows: 

Wkt(2) + Wxl(4) = 0(6) (4.7) 

Goo(2) + Goo(4) = aii/u + 0(6) (4.8) 

In general relativity a = 0, in addition one has three more equations: 

Gok =- Gok(3) + 0(5) = 0 (4.9) 

We consider now the following steps in our proof: 

(i). Since-see (4 .9 ) -Gox is 0(3) and since// is  obviously at least 0(4), the 
equations (4.7) and (4.8) to order two, namely 

Wkz(2) = Goo(2) = 0 (4.10) 

are the same as in general relativity; from which follows, as in general 
relativity, 3' = 1 but, as results from explicit calculation, X is not 
determined. 

(ii) Consider next equations (2.14) and (2.15), that is 

(U4Goo)" + u  2 ~k(2/t°k~ 2) = 0 (4.1 1) 

J@Ic - U 2 akGo0  = 0 (4.12) 
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With (4.10), Goo in (4.11) and (4.12) is 0(4). Thus, to the lowest 
order in c - I ,  we may write, if we use (4.8), these equations as follows: 

~. akGok = 0(5) (4.13) 
k 

(Gok - a @ku)" = 0(6) (4.14) 

in which, to order 0(3), Gok may be shown to have the following form 

aok  = ¼ (8 - x )  ~ (otx vt - @it vg )  + 0(5) (4.15) 
l 

while 

= -¼(8 - X)f) = -¼(8 - X) ~ 3zVz (4.16) 
I 

Note in both cases the factor (8 - X). With (4.15) we see that (4.13) is 
identically satisfied and with (4.15) and (4.16) we see that (4.14) to 
order 0(4) can be satisfied only if X = 8, which is the same value as in 
general relativity. This implies that 2/f k is 0(5) and/ / is  0(6). 

(iii) Consider finally the equations for goo(4). Since//is 0(6), (4.7) and 
(4.8) are up to 0(6), the same as in general relativity. It follows from 
this that goo(4) is also the same as in general relativity and thus the 
PPN formalism of our equations is the same as that of general relativity. 

5. Conclusions 

We have described a preferred frame metric theory of gravitation which 
agrees with all present observational evidence. It admits cosmological solutions 
of an oscillating type with real 'bounces'. This has been obtained at the expense 
of one new coupling parameter which is at present not measurable but should 
become so in the more or less near future. In certain timited conditions, the 
field equations reduce to those of general relativity. 

We should finally mention that another preferred frame theory has been 
developed recently by Wei-Tou-Ni (1973). It is notably different from the 
present one: it contains adjustable functions and the PPN approximation may 
agree with that of general relativity though the equations will never reduce 
to Einstein equations. 
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